
54 The Delphi Magazine Issue 55

Persistent Fields:
Friend Or Foe?
by Guy Smith-Ferrier

Persistent fields have been a fea-
ture of Delphi since its incep-

tion. In this time there has been
little change to their operation, yet
their use, or lack of use, is often
fiercely debated.

This article is not an introduc-
tion to persistent fields, but an
analysis of their strengths and
weaknesses, dispelling a myth or
two, and applying some fresh
information in Delphi 5.

Basic Use
All datasets have an array called
Fields which usually contains a
TField object for every column in
the result set. Fields can be
accessed either by their ordinal
position:

Table1.Fields[2].AsString :=
‘Sirius Cybernetics’;

or using the FieldByName method:

Table1.FieldByName(
‘Company’).AsString :=
‘Sirius Cybernetics’;

or using the TDataSet’s default vari-
ant array:

Table1[‘Company’] :=
‘Sirius Cybernetics’;

A persistent field is a field added by
the Fields Editor at design-time for
the purposes of simplifying and
speeding the development pro-
cess. Double click on any dataset
object (BDE, ADO, InterBase
Express, TClientDataSet) and you
will see the Fields Editor. Right
click the Fields Editor, select Add
all fields and persistent fields will
be added to the Fields Editor. If you
take a look at the underlying form’s
source code you will see a new field
has been added to the form for
each field added to the Fields
Editor:

TForm1 = class(TForm)
Table1: TTable;
Table1CUST_ID:
TSmallintField;

Table1COMPANY: TStringField;
Table1PHONE_NO: TStringField;

private
...

That’s all there is to it. You are now
ready to reap the rewards and pay
the price of persistent fields.

The Rewards
The simplest and greatest benefit
of persistent fields is compile-time
syntax checking. To use a persis-
tent field you refer to the field
added to the form’s class:

Table1COMPANY.AsString :=
‘Sirius Cybernetics’;

This scores above all of the previ-
ous methods of accessing a field
because it gives you compile-time
syntax checking on the field name.
All of the other methods check the
field name at runtime. As a general
rule, if you are faced with two solu-
tions where one gives compile-
time syntax checking and the other
gives runtime syntax checking, and
all other factors are equal, then
choose the solution with compile-
time syntax checking.

The second benefit is the ability
to use the Object Inspector to set
the field’s properties and events.
All Delphi programmers know how
easy it is to click in the Object
Inspector, or double click, to enter
an event and it is this ease of use
which is one of Delphi’s strengths.
However, it is not true to say that if
you don’t use persistent fields you
don’t have access to a field’s prop-
erties and cannot set a field’s
events. All persistent fields inherit
from TField, which contains most
of the properties, methods and
events used in its descendants. In

particular, you can still set events
for fields, but without the aid of the
Object Inspector you are forced to
set this in code (see Listing 1).

Although this is certainly possi-
ble, given a choice between the
two techniques, setting properties
and events using the Object
Inspector is certainly easier.

The third benefit is the ability to
drag persistent fields from the
Fields Editor and drop them on the
form. This truly is Rapid Applica-
tion Development, as all the fields
are neatly laid out on the form.
There’s more on this subject later.
Incidentally, if you like this feature
but decide not to use persistent
fields, you can still use it by simply
adding persistent fields to the
Fields Editor, dragging and drop-
ping them on to the form, and then
deleting the persistent fields.

The fourth benefit is the option
to take advantage of Delphi’s Data
Dictionary. I won’t cover the Data
Dictionary here because Steve
Troxell expertly explained it in
Issue 41. However, suffice to say
that the Data Dictionary is
intended to provide developers
with the ability to centralise the
setup of all of the fields in one or
more applications. However, as
the Data Dictionary is based on
aliases, it can only be used with the
BDE datasets, not with TClient-
DataSet, ADO Express datasets or
InterBase Express datasets.

Lookup Fields
Another benefit of persistent fields
is that their presence allows you to
create lookup, calculated and
aggregate (TClientDataSet only)
fields. Lookup, calculated and
aggregate fields are all created by
right clicking the Fields Editor,
selecting New field and choosing
the relevant field type. Calculated
fields require you to write code to
calculate the new field’s value in
the dataset’s OnCalcFields event
(the same event is shared between

procedure TForm1.FormCreate(
Sender: TObject);

begin
Table1.Fields[0].OnValidate :=
ValidateCustNo;

end;

➤ Listing 1

March 2000 The Delphi Magazine 55

all calculated fields). Aggregate
fields allow you to sum, count,
average, min or max a group of
fields. This is an incredibly useful
feature but it is only available in
TClientDataSet. It is especially
useful for totalling columns in a
grid or keeping batch totals accu-
rate in batch mode data entry.

A lookup field is a lookup from a
field of one table into another
table. For example, using data from
the IBLOCAL alias, an EMPLOYEE table
might have a lookup field called
DEPARTMENTNAME which is a lookup
from the DEPT_NO field in EMPLOYEE
into the DEPARTMENT table. The cor-
responding field in the DEPARTMENT
table is DEPT_NO and the returned
field is DEPARTMENT. The fact that the
field is called DEPT_NO in both the
EMPLOYEE table and the DEPARTMENT
table is simply a result of the
naming convention used in this
database: it isn’t a requirement of
Delphi’s lookup fields. The new
lookup field acts like any other
field and, unlike a calculated field,
is a read/write field.

As you can see, lookup fields
serve a similar purpose to SQL
JOINs and therefore a comparison
is in order. Let’s start with an
equivalent SQL equi-join:

SELECT EMPLOYEE.*,
DEPARTMENT.DEPARTMENT FROM
EMPLOYEE, DEPARTMENT WHERE
EMPLOYEE.DEPT_NO=
DEPARTMENT.DEPT_NO

This SQL gets executed on the
server (assuming a client/server
DBMS) and the resulting data is
sent back across the network to
the client (ie the BDE, ADO or Inter-
Base Express). To help us compare
the two techniques, let’s do an
example comparing the amount of
data sent across the network. For
simplicity, let’s say that each
EMPLOYEE record is 100 bytes and
the department name is 25 bytes.
So 100 records total 25,000 bytes.

Lookup tables clearly don’t work
the same way. However, the prob-
lem with the popular misconcep-
tions about how lookup fields
really work have their roots in the
same misconceptions about most
database features in Delphi. The

misconceptions are caused by the
fact that TTable and TQuery solve
their problems in a fundamentally
different way. In general, TQuery
attempts to cache its data so that
once a record has been read any
further attempt to read it is read
from its own internal cache. TTable,
on the other hand, generally does
not assume state. As a result it fre-
quently reads and re-reads data.
But this is not the place to restart
‘The Great TTable Versus TQuery
Debate’. Let’s start with TQuery.

A lookup field which gets its data
from a TQuery works very well. The
TQuery is opened when its depend-
ent table is opened. All its records
are read into its internal cache.
Thereafter, all lookups into the
TQuery are serviced from its cache
and no further access to the
DEPARTMENT table is made. So, con-
tinuing the example, the amount of
data sent across the network
would be 100 EMPLOYEE records (100
records * 100 bytes) plus all the
DEPARTMENT records. As the TQuery
can specify exactly what fields are
required (eg SELECT DEPT_NO,
DEPARTMENT FROM DEPARTMENT) then
this would be 21 records * 29
bytes. Thus the total data sent
across the network would be
100,609 bytes (ie 20% less data
than a JOIN). Of course, some pro-
grammers might use SELECT * FROM
DEPARTMENT, in which case the total
would be 101,596 bytes, which
doesn’t change the conclusion.

TTable, however, works quite dif-
ferently. When the dependent
table is first opened the TTable is
also opened. Only the first record
is retrieved by the application
(although the DBMS has generated
the entire result set anyway).
Thereafter, each time the depend-
ent table’s record pointer is
moved, the TTable has to execute a
new SELECT statement to retrieve
the lookup field’s value:

SELECT DEPT_NO, DEPARTMENT,
HEAD_DEPT, MNGR_NO, BUDGET,
LOCATION, PHONE_NO FROM
DEPARTMENT WHERE DEPT_NO=?

Since TTable doesn’t cache this
information, if you revisit a record
TTable has to execute the

same SELECT statement it executed
the first time you visited the
record. It’s difficult to say how
much information passes across
the network, because it depends
on how much activity occurs in the
dependent table. Given enough
time, however, it would eventually
exceed the SQL JOIN.

So what do we learn from this?
Firstly that TQuery provides much
more efficient lookups than TTable.
Secondly, Delphi’s lookup fields
have the potential to give better
performance than a regular JOIN,
because less information passes
across the network. However,
there is a far more compelling
reason to use Delphi’s lookup
fields instead of a JOIN: to make a
JOIN read/write (using the BDE)
you have to use either cached
updates or TClientDataSet. If you
use a lookup field instead of a JOIN
the result set stands a much better
chance of being read/write and
therefore maintenance is simpler.

Just before we leave lookup
fields, let’s return to the drag and
drop I talked about earlier. If you
drag and drop a lookup field onto
your form, the standard Fields
Editor drops a TDBLookupComboBox
on your form which is already
configured correctly.

TTable And SELECT
OK, now we know all about persis-
tent fields, let’s dispel a few myths.

One of the criticisms of TTable in
‘The Great TTable Versus TQuery
Debate’ is that because TQuery
allows the programmer to specify
the fields to be returned in the
result set the programmer can
exclude unwanted fields and there-
fore less data will be passed across
the network. The volume of data in
the result set is one of the biggest
factors affecting the performance
of a SELECT statement. As you
cannot define the SELECT statement
yourself in TTable, it is less effi-
cient. Programmers often defend
TTable by saying that although you
don’t have access to the SELECT
statement itself you can get TTable
to retrieve just the fields you want
by using persistent fields. If only
this were true. Sadly, it is not, and
this puts rather a large nail in the

56 The Delphi Magazine Issue 55

coffin of TTable. Incidentally, it is
easy enough to determine whether
this is true or not using SQL Moni-
tor to show the SELECT statement
which is generated (SQL Monitor is
Delphi’s forgotten tool and all BDE
developers should try it out).

In defence of these program-
mers, though, it is easy to adopt
this (false) belief. Here is an extract
from Delphi’s help on the benefits
of persistent fields: ‘You can
restrict the fields in your dataset to
a subset of the columns available
in the underlying database.’ The
statement is true but misleading. It
is referring to a logical restriction
on which fields are visible and can
be accessed; it does not, however,
refer to the fields in the SELECT
statement.

Performance
One of the benefits often touted for
persistent fields is that they are
faster than other methods of
accessing fields. This is simple
enough to test (see Listing 2).

First the test is run using the per-
sistent field, and then using Field-
ByName. Although this is not the
most scientific of tests, the conclu-
sion is still accurate. Using the per-
sistent field the test takes 6
seconds and using FieldByName it
takes 9 seconds. So, yes, it is true to
say that persistent fields are faster
than FieldByName (and, although
the test doesn’t show it, the same is
true for the other techniques for
accessing fields). However, as with
all performance tests, one must be
both paranoid and also engage a
little common sense. Simple maths
shows that the access of a persis-
tent field is very approximately 1.5
one-hundred-thousandths of a
second faster on my PC. Given this
difference, I have to ask, does
anyone care?

Drag And Drop
As I have already mentioned, the
creation of persistent fields allows
you to drag fields from the Fields
Editor onto a form. This is a very
impressive feature to demo, but in
time its limitations become appar-
ent. The problem is that the Fields
Editor decides which components
will be created for which fields. In
many ways it makes very good
guesses, given the components of
which it is aware. For example, a
string field will be given a TDBEdit, a
memo field will be given a TDBMemo
and a graphic field a TDBImage. All
good choices, but date fields, inte-
ger fields and float fields are also
given TDBEdits, which is not a good
choice. One solution is to use
Delphi’s Data Dictionary. As each
field is dragged from the Fields
Editor and dropped onto the form,
the Fields Editor reads the field’s
associated Attribute Set from the
data dictionary and reads the
Attribute Set’s Control Class. The
Data Dictionary allows you to enter
a class name in this field specifi-
cally for this purpose. So if you go
to the trouble of creating, say, a
TDBDateTimePicker for date fields
you can enter this in the associated
field’s Control Class and this con-
trol will be dropped onto the form.

However, this isn’t such a great
solution as it might first appear to
be. The problem is that it requires
the developer firstly to set up and
use the Data Dictionary and then to
enter the Control Class for every
attribute set. If the intention is
simply to change the default con-
trol class for a specific field type
this is a lot of extra work to add to a
project. Furthermore, this solution
is only available for BDE datasets,
which doesn’t help if you use ADO.

A better solution is to replace
the designer used by the Fields

Editor. Let me start by offering my
sincere thanks to Brian Long for
supplying the information to get
this solution to work. But for
Brian’s generosity, this probably
would have ended up in the Delphi
Clinic. This solution does only
work for Delphi 5, though. Thanks
to Delphi 5 including the code for
many of its property editors, we
can now see how most of the Fields
Editor works. Figure 1 shows the
designer class hierarchy.

TDSDesigner contains the key
method GetControlClass. The solu-
tion is to override this method and
make your own changes here.
Unfortunately, this isn’t as
straightforward as one would like.
The class we want to write is very
simple and is shown in Listing 3.

However, this class won’t com-
pile, thanks to the author of BDEReg
placing the all-important TBDE-
Designer in the implementationpart
not the interface part. The prag-
matic solution is to copy the com-
plete TBDEDesigner class from
BDEReg into a second unit, say
BDEReg2, and rename the new
TBDEDesigner to TBDEDesigner2. As a
general rule, though, if ever you
encounter a problem where block
copying code in this way is the
only solution, then it is usually an

var
i : integer;
Start, Elapsed : TDateTime;

begin
Start:=Now;
for i:=1 to 200000 do begin
Caption:=
Table1First_Name.AsString;

// Caption:=
// Table1.FieldByName(
// 'First_Name').AsString;

end;
Elapsed:=Start-Now;
Caption:=TimeToStr(Elapsed);

end;

➤ Listing 3

TBDEDesignerTBDEDesigner TCDSDesignerTCDSDesigner

TDSDesignerTDSDesigner

TDataSetDesignerTDataSetDesigner

TTObjectObject

➤ Figure 1
uses BDEReg;
type
TSpecialBDEDesigner = class(TBDEDesigner)
public
function GetControlClass(Field: TField): string; override;

end;
function TSpecialBDEDesigner.GetControlClass(Field: TField): string;
begin
if Field is TDateTimeField then
Result := 'TDBDateTimePicker' // TDBDateTimePicker is a hypothetical class

else if Field is TIntegerField then
Result := 'TDBSpinEdit' // TDBSpinEdit is a hypothetical class

else
Result := inherited GetControlClass(Field)

end;

➤ Listing 2

58 The Delphi Magazine Issue 55

indication that something is
wrong. In this case, either the
author of BDEReg never considered
that someone may want to inherit
from TBDEDesigner, or they wanted
to ensure no one ever would.

However, another problem with
this solution is that it only works
for TBDEDesigner. It ignores TCDS-
Designer (used by TClientDataSet)
and TDSDesigner (used by all other
datasets including ADO Express
and InterBase Express). TCDS-
Designer suffers the same fate as
TBDEDesigner, as the author of
MIDREG.PAS also put TCDSDesigner
in the implementation part. Fortu-
nately, TDSDesigner is in the inter-
face part, so we do not have to
resort to such crude methods for a
new designer for it. It is not a diffi-
cult problem to overcome: it
simply requires another two
classes which are identical to
TBDEDesigner except for the class
from which they inherit. Listing 4
shows the forward declarations of
all three new class declarations.

A cleaner but less functional
alternative to this solution would
be to inherit from TDSDesigner
instead of TBDEDesigner. Although
this solves our problem of being
able to drag and drop our own
components, it results in the loss
of all of the Data Dictionary fea-
tures for BDE components (which
matters if you use the Data Dictio-
nary) and also in the loss of all
TClientDataSet menu items (which
will be unacceptable for some).

Having decided on which design-
ers to write and how to write them,
the next step in the solution is to
tell Delphi to use our new
designer(s). If you have ever
created your own component
editor you will know that in order
to get Delphi to use your compo-
nent editor you need to add a Reg-
ister procedure which includes a
call to RegisterComponentEditor.
This is exactly what Delphi does to

register its own component
editors. Listing 5 shows various
calls to RegisterComponentEditor
extracted from various units in
Delphi 5’s property editor source
code.

All of the component editors
listed here inherit from TData-
SetEditor, which includes a
method called GetDSDesignerClass.
It is this method which the Fields
Editor calls to get important infor-
mation about how to behave. In
fact, the whole relationship
between the dataset editors, the
Fields Editor and the designers is a
small plug-in system to allow parts
of the editors to be reused. So, to
get the Fields Editor to use our
designer, we have to create a new
dataset editor and register it in
place of the old one. Listing 6
shows the class we want to write.

Unfortunately, we suffer the
same problems with the dataset
editor class as we did with the
designer class: we don’t have
access to the classes we want to
inherit from (eg TTableEditor) and
we have to write a separate dataset
editor for each component. If you
don’t want to copy the code for
each of the inaccessible classes
out then you can inherit from
TDataSetEditor.

After all that, you can now drag
and drop fields from the Fields
Editor and get your own compo-
nents dropped onto the form. This
month’s disk includes an
Enhanced Fields Editor which
reads the control classes from an
INI file.

Resistance To Change
I’ve talked a lot about the benefits
of persistent fields but I haven’t
said much about their disadvan-
tages. That’s what this section is
about. Persistent fields resist
change. They don’t like the under-
lying database structure to
change. This is unfortunate
because the only constant which
you can be sure of is change.
Change is guaranteed to occur and

database structures will always
change. It used to be that the
slightest little change to any field
would present a problem if you
used persistent fields. For exam-
ple, if your form used persistent
fields and you changed the size of a
field from length 20 to length 25
then the next time you started
Delphi and opened your form you
would get an error telling you that
the actual field size was different to
that which the persistent field
expected. Worse than this, the
associated table would be closed
without any indication that it was
closed. If the project was then
saved, the table would be saved in
a closed state. This is one of the
reasons why some programmers
feel that all tables should be
opened during the form’s OnCreate
event. Fortunately, as from Delphi
5, this behaviour has been
changed. If a field’s size changes
the relevant persistent field no
longer complains that it is expect-
ing a different size and therefore it
no longer surreptitiously closes
the table. Thus we can welcome
back those prodigal programmers
and tell them they no longer have
to open their tables in their
OnCreate events.

However, all is not completely
rosy, as persistent fields still com-
plain if the data type changes. In
many ways this behaviour should
be expected and, even if an appli-
cation didn’t use persistent fields,
it would still feel the shock of a
change of data type of a field. How-
ever, it is a problem if you want to
write applications which are por-
table across different databases.
For most data types, Delphi man-
ages a translation which doesn’t
cause a problem with persistent
fields. However, a few data types
do not translate well from one
database format to another and
these give persistent fields a prob-
lem. For example, Paradox BYTE
fields will translate to InterBase

➤ Listing 4

TSpecialBDEDesigner =
class(TBDEDesigner);

TSpecialCDSDesigner =
class(TCDSDesigner);

TSpecialDSDesigner =
class(TDSDesigner);

RegisterComponentEditor(TTable, TTableEditor);
RegisterComponentEditor(TQuery, TQueryEditor);
RegisterComponentEditor(TStoredProc, TStoredProcEditor);
RegisterComponentEditor(TADODataSet, TADODataSetEditor);
RegisterComponentEditor(TClientDataSet, TClientDataSetEditor);

➤ Listing 5

March 2000 The Delphi Magazine 59

VARCHARs. The persistent field type
for a Paradox BYTE is a TBytesField
and it gives a ‘Type mismatch for
field XYZ expecting Bytes actual
String’ exception when used with
the equivalent InterBase VARCHAR.
However, it could also be argued
(convincingly, in my opinion) that
if portability is an issue then one
should stick to data types which
are known to be compatible across
database formats and thus the
problem goes away.

The last resistance to change
you can expect to encounter when

using persistent fields is the dele-
tion of old fields and addition of
new fields. If a field is deleted then
when a form which uses a persis-
tent field for the deleted field is
opened you get a ‘Table1: Field XYZ
not found’ error. You have to delete
the persistent field and then
reopen the table. Now, if the form is
used for editing and contains many
controls on it where one refers
directly to the deleted field, then
this is a similar error to that which
you would get even if you weren’t
using persistent fields (because
you are trying to use a field which
no longer exists). However, if the
form simply displays a grid then it
is a small nuisance because most
grids simply display all available
columns, whatever they may be.
Similarly when a new field is added
to the database you have to update
the list of persistent fields before
you can make use of the field.

Friend Or Foe?
All in all I have to say that the bene-
fits of persistent fields far outweigh
the disadvantages. The compile-

time syntax checking is probably
worth it in its own right, but the
fact that you can’t realistically use
calculated, lookup or aggregate
fields without them is also compel-
ling. The performance issue is a
red herring, because any perfor-
mance benefit which is measured
in hundredths of a millisecond is
no benefit at all. The drag and drop
has always been enticing but with
the inclusion of the source code to
the property editors in Delphi 5 it,
at last, can be used to its full poten-
tial. Even the few drawbacks asso-
ciated with persistent fields
became fewer with Delphi 5’s
removal of the exception raised
when the field size changes. All in
all it is difficult to argue against
using persistent fields.

Guy Smith-Ferrier (gsmithferrier@
EnterpriseL.com) is Technical
Director of Enterprise Logistics
Ltd (www.EnterpriseL.com), a
training company specialising in
Delphi, which is now running
ADO courses.

type
TSpecialTableEditor =
class(TTableEditor)
protected
function GetDSDesignerClass:

TDSDesignerClass; override;
end;

function TSpecialTableEditor.
GetDSDesignerClass:
TDSDesignerClass;

begin
Result := TSpecialBDEDesigner

end;
procedure Register;
begin
RegisterComponentEditor(
TTable, TSpecialTableEditor);

end;

➤ Listing 6

	Basic Use
	The Rewards
	Lookup Fields
	TTable And SELECT
	Performance
	Drag And Drop
	Resistance To Change
	Friend Or Foe?

